149 research outputs found

    How round is a protein? Exploring protein structures for globularity using conformal mapping.

    Get PDF
    We present a new algorithm that automatically computes a measure of the geometric difference between the surface of a protein and a round sphere. The algorithm takes as input two triangulated genus zero surfaces representing the protein and the round sphere, respectively, and constructs a discrete conformal map f between these surfaces. The conformal map is chosen to minimize a symmetric elastic energy E S (f) that measures the distance of f from an isometry. We illustrate our approach on a set of basic sample problems and then on a dataset of diverse protein structures. We show first that E S (f) is able to quantify the roundness of the Platonic solids and that for these surfaces it replicates well traditional measures of roundness such as the sphericity. We then demonstrate that the symmetric elastic energy E S (f) captures both global and local differences between two surfaces, showing that our method identifies the presence of protruding regions in protein structures and quantifies how these regions make the shape of a protein deviate from globularity. Based on these results, we show that E S (f) serves as a probe of the limits of the application of conformal mapping to parametrize protein shapes. We identify limitations of the method and discuss its extension to achieving automatic registration of protein structures based on their surface geometry

    A Metric for genus-zero surfaces

    Full text link
    We present a new method to compare the shapes of genus-zero surfaces. We introduce a measure of mutual stretching, the symmetric distortion energy, and establish the existence of a conformal diffeomorphism between any two genus-zero surfaces that minimizes this energy. We then prove that the energies of the minimizing diffeomorphisms give a metric on the space of genus-zero Riemannian surfaces. This metric and the corresponding optimal diffeomorphisms are shown to have properties that are highly desirable for applications.Comment: 33 pages, 8 figure

    The H-factor as a novel quality metric for homology modeling

    Get PDF
    BACKGROUND: Drug discovery typically starts with the identification of a potential target that is then tested and validated either through high-throughput screening against a library of drug compounds or by rational drug design. When the putative target is a protein, the latter approach requires the knowledge of its structure. Finding the structure of a protein is however a difficult task. Significant progress has come from high-resolution techniques such as X-ray crystallography and NMR; there are many proteins however whose structure have not yet been solved. Computational techniques for structure prediction are viable alternatives to experimental techniques for these cases. However, the proper validation of the structural models they generate remains an issue. FINDINGS: In this report, we focus on homology modeling techniques and introduce the H-factor, a new indicator for assessing the quality of protein structure models generated with these techniques. The H-factor is meant to mimic the R-factor used in X-ray crystallography. The method for computing the H-factor is fully described with a demonstration of its effectiveness on a test set of target proteins. CONCLUSIONS: We have developed a web service for computing the H-factor for models of a protein structure. This service is freely accessible at http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor

    Persistence diagrams as morphological signatures of cells:A method to measure and compare cells within a population

    Get PDF
    Cell biologists study in parallel the morphology of cells with the regulation mechanisms that modify this morphology. Such studies are complicated by the inherent heterogeneity present in the cell population. It remains difficult to define the morphology of a cell with parameters that can quantify this heterogeneity, leaving the cell biologist to rely on manual inspection of cell images. We propose an alternative to this manual inspection that is based on topological data analysis. We characterise the shape of a cell by its contour and nucleus. We build a filtering of the edges defining the contour using a radial distance function initiated from the nucleus. This filtering is then used to construct a persistence diagram that serves as a signature of the cell shape. Two cells can then be compared by computing the Wasserstein distance between their persistence diagrams. Given a cell population, we then compute a distance matrix that includes all pairwise distances between its members. We analyse this distance matrix using hierarchical clustering with different linkage schemes and define a purity score that quantifies consistency between those different schemes, which can then be used to assess homogeneity within the cell population. We illustrate and validate our approach to identify sub-populations in human mesenchymal stem cell populations

    Persistence diagrams as morphological signatures of cells: A method to measure and compare cells within a population

    Full text link
    Cell biologists study in parallel the morphology of cells with the regulation mechanisms that modify this morphology. Such studies are complicated by the inherent heterogeneity present in the cell population. It remains difficult to define the morphology of a cell with parameters that can quantify this heterogeneity, leaving the cell biologist to rely on manual inspection of cell images. We propose an alternative to this manual inspection that is based on topological data analysis. We characterise the shape of a cell by its contour and nucleus. We build a filtering of the edges defining the contour using a radial distance function initiated from the nucleus. This filtering is then used to construct a persistence diagram that serves as a signature of the cell shape. Two cells can then be compared by computing the Wasserstein distance between their persistence diagrams. Given a cell population, we then compute a distance matrix that includes all pairwise distances between its members. We analyse this distance matrix using hierarchical clustering with different linkage schemes and define a purity score that quantifies consistency between those different schemes, which can then be used to assess homogeneity within the cell population. We illustrate and validate our approach to identify sub-populations in human mesenchymal stem cell populations.Comment: 21 pages, 7 Figure

    NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis

    Get PDF
    Normal mode analysis (NMA) is an efficient way to study collective motions in biomolecules that bypasses the computational costs and many limitations associated with full dynamics simulations. The NOMAD-Ref web server presented here provides tools for online calculation of the normal modes of large molecules (up to 100 000 atoms) maintaining a full all-atom representation of their structures, as well as access to a number of programs that utilize these collective motions for deformation and refinement of biomolecular structures. Applications include the generation of sets of decoys with correct stereochemistry but arbitrary large amplitude movements, the quantification of the overlap between alternative conformations of a molecule, refinement of structures against experimental data, such as X-ray diffraction structure factors or Cryo-EM maps and optimization of docked complexes by modeling receptor/ligand flexibility through normal mode motions. The server can be accessed at the URL

    Sampling the conformation of protein surface residues for flexible protein docking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The problem of determining the physical conformation of a protein dimer, given the structures of the two interacting proteins in their unbound state, is a difficult one. The location of the docking interface is determined largely by geometric complementarity, but finding complementary geometry is complicated by the flexibility of the backbone and side-chains of both proteins. We seek to generate candidates for docking that approximate the bound state well, even in cases where there is backbone and/or side-chain difference from unbound to bound states.</p> <p>Results</p> <p>We divide the surfaces of each protein into local patches and describe the effect of side-chain flexibility on each patch by sampling the space of conformations of its side-chains. Likely positions of individual side-chains are given by a rotamer library; this library is used to derive a sample of possible mutual conformations within the patch. We enforce broad coverage of torsion space. We control the size of the sample by using energy criteria to eliminate unlikely configurations, and by clustering similar configurations, resulting in 50 candidates for a patch, a manageable number for docking.</p> <p>Conclusions</p> <p>Using a database of protein dimers for which the bound and unbound structures of the monomers are known, we show that from the unbound patch we are able to generate candidates for docking that approximate the bound structure. In patches where backbone change is small (within 1 Å RMSD of bound), we are able to account for flexibility and generate candidates that are good approximations of the bound state (82% are within 1 Å and 98% are within 1.4 Å RMSD of the bound conformation). We also find that even in cases of moderate backbone flexibility our candidates are able to capture some of the overall shape change. Overall, in 650 of 700 test patches we produce a candidate that is either within 1 Å RMSD of the bound conformation or is closer to the bound state than the unbound is.</p
    corecore